1. 首页 > 热点 >

复合梯形公式 复合梯形公式MATLAB

等数列求和公式是什么?

a^3+b^3=(a+b)(a^2-ab+b^2) 

等数列求和公式Sn=(a1+an)n/2;Sn=na1+n(n-1)d/2(d为公);Sn=An2+Bn;A=d/2,B=a1-(d/2)。基本性质

复合梯形公式 复合梯形公式MATLAB复合梯形公式 复合梯形公式MATLAB


、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

拓展资料

等数列推论

1、等数列求和公式:(字母描述)

其中等数列的首项为a1,末项为an,项数为n,公为d,前n项和为Sn。

2、等数列的通项公式:

其中等数列的首项为a1,末项为an,项数为n,公为d,前n项和为Sn。

3、等数列的判定:

4、等数列的基本性质:

扩展资料:

知识点:

等数列基本公式:

末项=首项+(项数-1)×公

项数=(末项-首项)÷公+1

首项=末项-(项数-1)×公

和=(首项+末项)×项数÷2

末项:一位数

首项:位数

项数:一共有几位数

和:求一共数的总和

等数列求和公式如图所示

等数列求和公式:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2。

等数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的等于同一个常数,这个数列就叫做等数列,而这个常数叫做等数列的公,公常用字母d表示。例如:1,3,5,7,9……(2n-1)。等数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2。注意:

等数列公式

an=a1+(n-1)d

前n项和公式为:Sn=na1+n(n-1)d/2

若公d=1时:Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

以上n均为正整数

等数列基本公式:

末项=首项+(项数-1)×公

项数=(末项-首项)÷公+1

首项=末项-(项数-1)×公

和=(首项+末项)×项数÷2

末项:一位数

首项:位数

项数:一共有几位数

和:求一共数的总和

等数列求和公式

公式法

an=a1+(n-1)d

前n项和公式为:Sn=na1+n(n-1)d/2

若公d=1时:Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

以上n均为正整数

倒序相加法

这是推导等数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)

Sn =a1+ a2+ a3+...... +an

Sn =an+ an-1+an-2...... +a1

上下相加得Sn=(a1+an)n/2

分组法

有一类数列,既不是等数列,也不是等比数列,若将这类数列适当拆开,可分为几个等、等比或常见的数列,然后分别求和,再将其合并即可.

例如:an=2n+n-1,可看做是2n与n-1的和

Sn=a1+a2+...+an

=2+0+22+1+23+2+...+2n+n-1

=(2+22+...+2n)+(0+1+...+n-1)

=2(2n-1)/(2-1)+(0+n-1)n/2

=2n+1+n(n-1)/2-2

通项化归法

先将通项公式进行化简,再进行求和。

如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。

并项求和法

(常采用先试探后求和的方法)

例:1-2+3-4+5-6+……+(2n-1)-的和)=2n

方法一:(并项)

求出奇数项和偶数项的和,再相减。

方法二:

(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]

方法三:

构造新的数列,可借用等数列与等比数列的复合。

an=n(-1)^(n+1)

等数列公式有什么

末项=首项+(项数-1)公

项数=(末项-首项)÷公+1

首项=末项-(项数-1)公

和=(首项+末项)项数÷2

末项:一位数

首项:位数

项数:一共有几位数

和:求一共数的总和。

2、Sn=na(n+1)/2 n为奇数

sn=n/2(A n/2+A n/2 +1) n为偶数

3、等数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。

4、公为d的等数列{an},当n为奇数是时,等中项为一项,即等中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n.

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)且等比数列a1≠ 0。。注:q=1时, 为常数列。(1)通项公式:(2)求和公式:Sn=(a1-anq)/1-q求和公式用文字来描述就是:Sn=(首项-末项公比)÷(1-公比)任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1.(3)从等比数列的定义、通项公式、前n项和公式可以推出:(4)等比中项:若 ,那么 为 等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。另外,一个各项均为正数的等比数列各项取同底数后构成一个等数列;反之,以任一个正数C为底,用一个等数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等数列是“同构”的。等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。等比中项公式: 或者 。(5)无穷递缩等比数列各项和公式:无穷递缩等比数列各项和公式:公比的小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。(6)由等比数列组成的新的等比数列的公比:{an}是公比为q的等比数列1.若A=a1+a2+……+anB=an+1+……+a2nC=a2n+1+……a3n则,A、B、C构成新的等比数列,公比Q=q^n2.若A=a1+a4+a7+……+a3n-2B=a2+a5+a8+……+a3n-1C=a3+a6+a9+……+a3n则,A、B、C构成新的等比数列,公比Q=q

性质

(1)若m、n、p、q∈N,且m+n=p+q,则aman=apaq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{anbn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等,公为log以a为底q的对数。(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比数列中,首项A1与公比q都不为零。注意:上述公式中A^n表示A的n次方。(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

求通项方法

(1)待定系数法:已知a(n+1)=2an+3,a1=1,求an?构造等比数列a(n+1)+x=2(an+x)a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3∴(a(n+1)+3)/(an+3)=2∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1q^(n-1)=42^(n-1),an=2^(n+1)-3(2)定义法:已知Sn=a·2^n+b,,求an的通项公式?∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b∴an=Sn-Sn-1=a·2^n-1

应用

等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金(1+利率)^存期。

等数列求和公式:

Sn=n(a1+an)/2

Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n

通项公式为:an=a1+(n-1)d。首项a1=1,公d=2。前n项和公式为:Sn=a1n+[n(n-1)d]/2或Sn=[n(a1+an)]/2。注意:以上n均属于正整数。

扩展资料:

等数列的公式:

公d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);

项数=(末项-首项来)÷公+1;

末项=首项+(项数-1)×公;

前n项的和Sn=首项×n+项数(项数-1)公/2;

第n项的值an=首项+(项数-1)×公;

等数源列中知项公式2an+1=an+an+2其中{an}是等数列;

等数列的和=(首项+末项)×项数÷2;

an=am+(n-m)d,若已知某一项am,可列出与d有关的式子求解an。

高中选修数学公式? 主要内容解释详细

十一、比例的几个性质

1、比例基本性质:

2、反比定理:

3、更比定理:

5、 合比定理;

6、 分比定理:

7、 合分比定理:

8、 分合比定理:

9、 等比定理:若 , ,则 .

十二、复合二次根式的化简

当 是一个完全平方数时,对形如 的根式使用上述公式化简比较方便.

⑵并集元素个数:

n(A∪B)=nA+nB-n(A∩B)

5.N 自然数集或非负整数集

Z 整数集 Q有理数集 R实数集

6.简易逻辑中符合命题的真值表

p 非p

真 假

假 真

二.函数

1.二次函数的极点坐标:

函数 的顶点坐标为

2.函数 的单调性:

在 处取极值

3.函数的奇偶性:

在定义域内,若 ,则为偶函数;若 则为奇函数.

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的,所以流对应相等的两个直角三角形全等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)和这条线段两个端点的距离相等 ?

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

--------------------------------------------------------------------------------

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d wc呁/S∕?

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值

--------------------------------------------------------------------------------

101圆是定点的距离等于定长的点的

102圆的内部可以看作是圆心的距离小于半径的点的

103圆的外部可以看作是圆心的距离大于半径的点的

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线

109定理 不在同一直线上的三点确定一个圆.

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r ?

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r) ?

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理

判别式

b^2-4ac=0 注:方程有两个相总额的求法可以分为以下四种情况:等的实根

b^2-4ac>0 注:方程有两个不等的实根 ?

b^2-4ac

八年级上册数学期中

printf("----------------------------------------------------------\n");

章 一次函数

1 函数的定义,函数的定义域、值域、表达式,函数的图像

2 一次函数和正比例函数,包括他们的表达式、增减性、图像

3 从函数的观点看方程、方程组和不等式

第二章 数据的描述

1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点

条形图特点:

(1)能够显示出每组中的具体数据;

(2)易于比较数据间的别

扇形图的特点:

(1)用扇形的面积来表示部分在总体中所占的百分比;

(2)易于显示每组数据相对与总数的大小

折线图的特点;

易于显示数据的变化趋势

直方图的特点:

(1)能够显示各组频数分布的情况;

(2)易于显示各组之间频数的别

2 会用各种统计图表示出一些实际的问题

第三章 全等三角形

1 全等三角形的性质:

全等三角形的对应边、对应角相等

2 全等三角形的判定

边边边、边角边、角边角、角角边、直角三角形的HL定理

3 角平分线的性质

角平分线上的点到角的两边的距离相等;

到tan(α+β)=——————角的两边距离相等的点在角的平分线上。

第四章 轴对称

1 轴对称图形和关于直线对称的两个图形

2 轴对称的性质

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

线段垂直平分线上的点到线段两个端点的距离相等;

到线段两个端点距离相等的点在这条线段的垂直平分线上

3 用坐标表示轴对称

点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

4 等腰三角形

等腰三角形的两个底角相等;(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)

一个三角形的两个相等的角所对的边也相等。(等角对等边)

5 等边三角形的性质和判定

等边三角形的三个内角都相等,都等于60度;

三个角都相等的三角形是等边三角形;

有一个角是60度的等腰三角形是等边三角形;

推论:

直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。

在三角形中,大角对大边,大边对大角。

第五章 整式

1 整式定义、同类项及其合并

2 整式的加减

3 整式的乘法

(1)同底数幂的乘法:

(2)幂的乘方

(3)积的乘方

(4)整式的乘法

4 乘法公式

(1)平方公式

(2)完全平方公式

5 整式的除法

(1)同底数幂的除法

(2)整式的除法

6 因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

初二下册知识点

章 分式

1 分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2 分式的运算

(1)分式的乘除

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2) 分式的加减

加减法法则:同分母分式相加减,分母不变,把分子相加减;

异分母分式相加减,先通分,变为同分母的分式,再加减

3 整数指数幂的加减乘除法

4 分式方程及其解半角的正弦、余弦和正切公式 三角函数的降幂公式法

第二章 反比例函数

1 反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2 反比例函数在实际问题中的应用

第三章 勾股定理

1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章 四边形

1 平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2 特殊的平行四边形:矩形、菱形、正方形

(1) 矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定: 有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论: 直角三角形斜边的中线等于斜边的一半。

(2) 菱形

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形。

(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3 梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形。

第五章 数据的分析

加权平均数、中位数、众数、极、方

MATLAB数值积分

1、等数列基本公式:

quad(@(x)3/20/sqrt(2pi)exp(-9(x-170).^2/800), 165, 175, 1e-4)

tan(π+α)=tanα

ans =

0.54627 定理1 在角的平分线上的点到这个角的两边的距离相等7

高中各类函数公式代数函数与三角函数

tan(3π/2-α)=cotα

同角三角函数的基本关系式

是的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

倒数关系: 商的关系: 平方关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

诱导公式

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与的三角函数公式 公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

1-tanα ·tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα ·tanβ

2tan(α/2)

1次不足,第二次也不足, 总额= 大不足-小不足+tan2(α/2)

1-tan2(α/2)

cosα=——————

1+tan2(α/2)

2tan(α/2)

tanα=——————

1-tan2(α/2)

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

2tanα

tan2α=—————

1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

3tanα-tan3α

1-3tan2α

三角函数的和化积公式 三角函数的积化和公式

α+β α-β

sinα+sinβ=2sin—--·cos—-—

2 2

α+β α-β

sinα-sinβ=2cos—--·sin—-—

2 2

α+β α-β

cosα+cosβ=2cos—--·cos—-—

2 2

α+β α-β

cosα-cosβ=-2sin—--·sin—-—

2 2 1

sinα ·cosβ=-[sin(α+β)+sin(α-β)]

21

21

cosα ·cosβ=-[cos(α+β)+cos(α-β)]

21

sinα ·sinβ=- -[cos(α+β)-cos(α-β)]

2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)

mathematica中如何使用复合梯形求积公式

sinα=——————

使用Integrate或者NIntegrate函数

mathematica有详细的帮助说明文档, 直接在文档中寻找就可以了.

具体实现方。根据求“单一量”的步骤的多少143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4,法要看算法的实现思路

初中所有数学公式及定理

cosα ·sinβ=-[sin(α+β)-sin(α-β)]

整数和小数的应用

1 简单

(1) 简单

:只含有一种基本

,或用一步运算解答的

,通常叫做简单应用题。

(2) 解题步骤:

a 审题理解题意:了

的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。

b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系

的含义,分析

,确定算法,进行解答并标明正确的单位名称。

C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

2 复合应用题

(1)有两个或两个以上的基本

组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相多少(或倍数关系)与其中一个数,求两个数的和(或)。

已知两数之和与其中一个数,求两个数相多少(或倍数关系)。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、

d:根据计算的结果,先口答,逐步过渡到笔答。

( 3 ) 解答加法应用题:

a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数

数多多少,求乙数是多少。

(4 ) 解答

应用题:

a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

-b求两个数相的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数

数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数

数少多少,求乙数是多少。

(5 ) 解答乘法应用题:

a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

( 6) 解答除法应用题:

a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

(7)常见的数量关系:

总价= 单价×数量

路程= 速度×时间

工作总量=工作时间×工效

总产量=单产量×数量

3典型应用题

具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)

问题:

是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=

。:已知两个以上若干份的

,求总平均数是多少。

数量关系式 (部分平均数×

)的总和÷(

。额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数 数与各数之的和÷总份数=数应给数 数与个数之的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的

。分析:求汽车的

同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的

为 2 ÷ =75 (千米)

2)

:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为

可以分为一次归一问题,两次归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”

正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)

总数量÷单一量=份数(反归一)

例一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?

分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)归总问题:是已知单位数量和

数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和

算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。

例 修一条水渠,原每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?

分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

(4)

:已知大小两个数的和,以及他们的,求这两个数各是多少的应用题叫做

。解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+)÷2 = 大数 大数-=小数

(和-)÷2=小数 和-小数= 大数

例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?

分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

(5)

:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做

。解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数 标准数×倍数=另一个数

例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?

分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。

列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

(6)

:已知两个数的,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:两个数的÷(倍数-1 )= 标准数 标准数×倍数=另一个数。

例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?

分析:两根绳子剪去相同的一段,长度没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

(7)

:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做

。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:

同时同地相背而行:路程=速度和×时间。

同时

:相遇时间=速度和×时间

同时同向而行(速度慢的在前,快的在后):追及时间=路程速度。

同时同地同向而行(速度慢的在后,快的在前):路程=速度×时间。

例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?

分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度。

已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

(8)流

题:一般是研究船在“流水”中航行的问题。它是

中比较特殊的一种类型,它也是一种

。它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

逆水速度:船逆流航行的速度。

顺速=船速+水速

逆速=船速-水速

题当作和问题解答。 解题时要以水流为线索。

解题规律:船行速度=(顺水速度+ 逆流速度)÷2

流水速度=(顺流速度逆流速度)÷2

路程=顺流速度× 顺流航行所需时间

路程=逆流速度×逆流航行所需时间

例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?

分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

(9) 还原问题:已知某未知数,经过一定的

后所得的结果,求这个未知数的应用题,我们叫做还原问题。

解题关键:要弄清每一步变化与未知数的关系。

解题规律:从结果 出发,采用与原题中相反的运算(

)方法,逐步推导出原数。

根据原题的

列出数量关系,然后采用

的方法计算推导出原数。

解答还原问题时注意观察运算的顺序。若需要先算

,后算乘除法时别忘记写括号。

例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?

分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)

一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

(10)

:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做

。解题关键:解答

首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

解题cos(π/2+α)=-sinα规律:沿线段植树

棵树=段数+1 棵树=总路程÷株距+1

株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)

沿周长植树

棵树=总路程÷株距

株距=总路程÷棵树

总路程=株距×棵树

例 沿公路一旁埋

301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。

分析:本题是沿线段埋

,要把

的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )

:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做

。解题关键:

的解法要点是先求两次分配中分配者没份所得物品数量的,再求两次分配中各次共分物品的(也称总额),用前一个去除后一个,就得到分配者的数,进而再求得物品数。

解题规律:总额÷每人额=人数

次多余,第二次不足,总额=多余+ 不足

次正好,第二次多余或不足 ,总额=多余或不足

次多余,第二次也多余,总额=大多余-小多余

例 参加美术小组的同学,每个人分的相同的

的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?

分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年龄问题:将为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。

解题关键:年龄问题与和、和倍、

类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的是不会改变的,因此,年龄问题是一种“不变”的问题,解题时,要善于利用不变的特点。

例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?

分析:父子的年龄为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21-( 48-21 )÷( 4-1 ) =12 (年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称

解题关键:解答鸡兔问题一般采用

,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数,可推算出某一种的头数。

解题规律:(总腿数-

数×总头数)÷一只鸡兔腿数的=兔子只数

兔子只数=(总腿数-2×总头数)÷2

如果假设全是兔子,可以有下面的式子:

鸡的只数=(4×总头数-总腿数)÷2

兔的头数=总头数-鸡的只数

例共 50 个头, 170 条腿。问鸡兔各有多少只?

兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)

鸡的只数 50-35=15 (只)

(二)分数和

的应用

1(4)解答连乘连除应用题。 分数

应用题:

分数

的应用题与整数加

的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2应用题:

是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3应用题:

求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作

。甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

已知一个数的几分之几(或百分之几 ) ,求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

解题关键:准确判断单位“1”的量把单位“1”的量看成x根据

的意义列方程,或者根据

的意义列算式,但必须找准和分率相对应的已知实际

数量。

4=发芽种子数/试验种子数×

小麦的出粉率= 面粉的重量/小麦的重量×

产品的合格率=合格的产品数/产品总数×

职工的

=实际出勤人数/应出勤人数×

5:

解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系式:

工作总量=工作效率×工作时间

工作效率=工作总量÷工作时间

工作时间=工作总量÷工作效率

工作总量÷工作效率和=合作时间

6 纳税

纳税就是把根据各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给。

缴纳的税款叫应纳税款。

与各种收入的(销售额、

、……)的比率叫做税率。

利息

存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

利息=本金×利率×时间

O(∩_∩)O祝你开心

分别用n=8,16,32的复合梯形和复合辛普森公式计算 根号X乘lnX 0到1的积分

tan(2π-α)=-tanα

代码如下,但是似乎你的题目有问题:

tan3α=——————

根号X乘lnX 0到1,根号0乘ln0等于0,根号1乘ln1等于1,怎么求?

#include

#include

#include

double fsimpf(double x) /要进行计算的被积函数/

{double y根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。;

y=log(x)sqrt(x);

return(y);

}double fsimp(double a,double b,double eps,int n) /辛普森算法: a为积分下限,b为积分上限,eps是希望达到的精度/

{int k;

double h,t1,t2,s1,s2,ep,p,x;

h=(float)(b-a)/n;

t1=h(fsimpf(a)+fsimpf(b))/2.0; /用梯形公式求出一个大概的估值/

s1=t1;

ep=eps+1.0;

while (ep>=eps)

{/用梯形法则计算/

p=0.0;

for (k=0;k<=n-1;k++)

{x=a+(k+0.5)h;

p=p+fsimpf(x);

}t2=(t1+hp)/2.0;

/用辛普森公式求精/

s2=(4.0t2-t1)/3.0;

ep=fabs(s2-s1);

t1=t2; s1=s2; n=n+n; h=h/2.0;

}return(s2);

}void main()

{double a,b,eps,t;

a=0.0; b=1.0; eps=0.0000001;

printf("\n");

printf(" This program is to calculat the Value of \n");

printf(" a definite integral by Simpson Mod. \n");

printf("\n");

printf("\n----------------------------------------------------------\n");

printf(" >> The result of definite integral is (n=8): \n");

printf(" >> SIGMA(0,1)sqrt(x)ln(x)dx = ");

t=fsimp(a,b,eps,8);

printf("%e\n",t);

printf("\n----------------------------------------------------------\n");

printf(" >> The result of definite integral is (n=16): \n");

printf(" >> SIGMA(0,1)sqrt(x)ln(x)dx = ");

t=fsimp(a,b,eps,16);

printf("%e\n",t);

printf("\n----------------------------------------------------------\n");

printf(" >> The result of definite integral is (n=32): \n");

printf(" >> SIGMA(0,1)sqrt(x)ln(x)dx = ");

t=fsimp(a,b,eps,32);

printf("%e\n",t);

("pause");

}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 12345678@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息